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Abstract. An obliquely impinging electromagnetic wave exerts a negative radiation pressure 
on an abrupt plasma-vacuum boundary. The radiation pressure on a conductor immersed 
in plasma consists of an electromagnetic part and a mechanical part. The equation of 
motion of a quasi-particle corresponding to a wave packet is derived. The time-averaged 
motion of a charged particle in a non-monochromatic wave packet is given. N o  assumption 
is made concerning the validity of Abraham or Minkowski momentum densities. 

1. Introduction 

The recent growth of interest in radiation pressure effects has been motivated mostly 
by new experimental capabilities of laser devices. Another attractive point here is the 
well-known contradiction between the Abraham and Minkowski field momentum 
density in dielectrics (see Brevik 1970, Ginzburg 1973 and Skobel'tsyn 1973 for a 
review). In the case of the presence of oscillating fields the analysis may be more 
complicated due to the procedure of time averaging. The basic point, at least regarding 
the fluid dynamics, is the knowledge of an equation for the time-averaged fluid velocity. 
The general form of this equation for arbitrary media has hitherto not been derived. 

As an exception to this situation, the classical plasma seems to be readily accessible 
for theoretical study. Recalling the reviews published by Motz and Watson (1967) 
and by Gorbunov (1973), one may observe considerable progress in understanding 
many radiation pressure effects in plasmas. An interesting consequence of the action 
of electrodynamical forces, namely, the expansion of a weakly inhomogeneous plasma, 
has been predicted by Hora er a1 (1967) (see also Hora 1969, Lindl and Kaw 1971). 
These expansive forces are closely connected with the mechanical momentum density 
(Klima and Petrzilka 1972) 

1--E 
E,(z - rgt)Eg*(z - ~ , t ) ,  

p z  = i G q  
which is transported in a one-dimensional quasi-monochromatic wave packet ; in (1.1) 
E ,  is the electric field amplitude, ug = CJE is the group velocity, E = 1 -~:,42~, ('jp is 
the plasma frequency and Q is some mean frequency of the wave packet. The presence 
of the momentum (1.1) also explains (Klima and PetrZilka 1972) the rather unexpected 
zero radiation pressure (Klima and Petrfilka 1968) at perpendicular incidence of an 
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electromagnetic wave upon an abrupt plasma-vacuum boundary. The energy- 
momentum tensor including (1.1) implies (Klima and Petrgilka 1973c) simple particle-like 
properties of a classical wave packet and, moreover, the equivalence of Einstein's 
energy-mass relation to the wave dispersion law. The mechanical momentum transport 
also appears to be relevant for the radiation pressure effects in non-dispersive dielectrics 
(Skobel'tsyn 1973, Gordon 1973). 

The purpose of the present paper is to develop the above theory of momentum 
transport by considering a few simple models. In $2,  the force exerted on an abrupt 
plasma-vacuum boundary by an obliquely propagating electromagnetic wave is 
derived. The evidence of radiation pressure on a conductor immersed in a liquid 
(Jones and Richards 1954) stimulated the authors to examine an analogous situation for 
a plasma (6 3). Section 4 extends the particle-like properties of a wave packet mentioned 
above to the case of a weakly inhomogeneous plasma. While quasi-monochromatic 
waves are considered in $§ 2, 3, 4, a substantially non-monochromatic wave packet is 
studied in $ 5. 

2. Abrupt plasma-vacuum boundary 

In Cartesian coordinates x, y, z, isotropic collisionless and cold plasma is assumed to be 
in the half-space z > 0. The refractive index is N = 1 for z c 0 and N = ,/E for z > 0. 
The plane (x, z )  is the plane of incidence of a quasi-monochromatic wave packet coming 
from vacuum. The corresponding electric field intensity E' varies only in the direction 
of propagation and lies in the (x, z )  plane : 

E' = (cos a, 0, -sin a)Eb(x, z, t )  exp i-(x sin a + z cos a - ct) ) is 
Eb(x, z, t )  = /-+: d o  E(o) exp ("l' i-(x sin a + z cos a - c t )  ) 

(2.1) 

where EL is the slowly varying amplitude, 

(2.2) 

and a is the angle of incidence, a being less than sin- N .  By using the boundary condi- 
tions at z = 0, 

Ebcosa+Eicosa  = EOPcosp, J E  sin p = sin a, EL - E; = EEJE, 

the intensities of the reflected and the transmitted waves are readily obtained in the 
following form : 

ER = (cos a, 0, sin a)Et(x, z ,  1) exp i-(x sin a - z cos a - ct)  ) ( 9  (2.3) 

E' = (cos p, 0, - sin p)EE(x, z, t )  exp sin a SZJC cos p - c t )  

d o  E(w) exp i -(x sin a - z cos a - ( O c R  
E,R(X, z, t )  = 

d o  E(o) exp [ i- o,'( xsin a+cos- zcos2 a c t ) ] .  (2.6) 
2 cos a EE(x, Z,  t )  = 
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To simplify the algebra it is useful to  introduce variables 

5 = xcosrc-zsinrc 

q = xsinK+ZCOSK 

with 

(2.7) 

We note that K < U. c fl  at a # 0. The amplitude of the transmitted wave E: then 
depends only upon the argument q - Vt, 

J c  sin a cos p 
[I +(E- 2) sin2a] ' 1 ' '  

sin K = 

c J c  COS p 
[ 1 + (c  - 2) sin'a] ' 1 ' '  

V =  

Consequently the envelope of the transmitted wave packet (figure 1) moves with the 
velocity Y = (sin K ,  0, cos K)V. The group velocity ug = dw/ak = (sin p, 0, cos p)cJc is 
related to Vas 

= Ug COS(b - K). (2.9) 
The difference between the group velocity vg and the envelope velocity Y stems from 
the one-dimensionality of the wave packet. In other words the component of U, per- 
pendicular to Y can be ignored in the envelope motion. 

The above information about the field quantities is sufficient for calculating the 
time-averaged forces. It has been shown by Fainberg and Shapiro (1965) that the time 
dependence of field amplitude may produce a force proportional to dE'/dt. For a 
transverse wave, however, this force vanishes (cf Klima 1972) and only the well-known 

Plasma 

Figure 1. A schematic representation of the incident (I), reflected (R) and transmitted (P) 
wave packets. The angles of incidence and of reflection are a and -2. respectively. The 
direction of the group velocity ug is determined by b, whereas K is the angle between the z 
axis and the velocity Y of the motion of the transmitted wave packet envelope. 
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force proportional to ( -  V E 2 )  remains. Consequently, the tensor of time-averaged 
stresses 

(2.10) 

can be used in deriving the surface force density F S  which acts on the plasma-vacuum 
boundary : 

(2.1 1 )  

1 1 
16n 1671 T,, = - -6 , , (E,*Ej+HTHj)+-(H:H,+ H,H:+C,, ,~E,E,*+P~,E,*E,)  

F,” = TXz(z -+ O+)- TX,(z + 0-) = 0, F,” = 0, 

Fs = T,(z -+ O f ) -  ~ J z  + 0-) 

- EbEF 4(1 -e)’ cos’a sin2/? - -__ 
167~ ( J c  COS C( + COS /?)’ 

(2.12) 

I t  should be emphasized that the force density F S  is directed from plasma into vacuum. 
Physically, this force arises due to the presence of an oscillating surface charge, quite 
similarly as in the case of an electrostatic field. A somewhat different result has been 
derived for the case of an incompressible fluid with P > 1 (Kats and Kontorovich 
1969), where, however, the electrostrictive force has been neglected. 

To complete the physical picture, it is useful to express the relevant components of 
the stress tensor Tmn in terms of the momentum densities. The time-averaged momentum 
density p of plasma particles is given by the equation (see eg Klima 1972) 

which is identical with 

where 
&E,PE,P* 

gp = (sin /?, 0, cos /?) 
8nc 

(2.13) 

(2.14) 

(2.1 5) 

(2.16) 

is the momentum density of the electromagnetic field. Integrating (2.1 3) and neglecting 
the terms of higher than second order in E:, we have 

1 - C  
p = (sin K ,  0, cos K ) - - - E , P ( ~  - vt)E,P*(r/ - vr). 

16nV (2.17) 

From (2.14) and (2.15) it is easy to find that 

- Txx = PXVX + gpxt’gx > 

- T xz = - T,, 

(2.18) 

(2.19) P 
PxI/ ,+gx~~YL = PzI/,+g,PugX3 

- Tz = P Z K  +g:ugz. (2.20) 
It is obvious that the momentum density flux T,, is the sum of the following two parts : 

(i) the mechanical momentum flux p,V,, 
(ii) the electromagnetic momentum flux gLu,,,. 
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Substituting (2.20) and the corresponding free space quantities into (2.12) we obtain 

FZ = ( g ~ - g , R ) ~ c o ~ u - p p , ~ - g , c p , ,  P (2.21) 

which is nothing more than the momentum conservation law. For U = 0 the zero surface 
force (Klima and PetrZilka 1968, 1972) is re-derived. 

In addition to the surface force F S ,  a volume force of the order ( -  VE') arises due 
to the given space dependence of the field amplitude in the incident wave packet. 
Consequently plasma is accelerated in front of the wave packet maximum and decelerated 
behind the maximum, which is just the origin of the mechanical momentum p .  This 
plasma motion leads to the following perturbation of particle concentration (Klima 
and PetrZilka 1972): 

E ~ E ~ * ,  1 - E  

16nmiV2 
6 n  = (2.22) 

where mi is the ion mass. It has been shown recently that the corresponding rest mass 
density mic26n is a relevant part of the relativistic energy-momentum tensor (Klima 
and PetrZilka 1973a, b). Introducing the total energy density transport 

s'"' = c2gp + mic2 V6n,  

we obtain the necessary relativistic relation (Landau and Lifshitz 1962), 

S'"'= c'(gP+p) = c'pt0'. (2.23) 

As to the wave polarized perpendicularly to the plane of incidence, the surface 
force density is zero. 

3. Plasma-perfect conductor boundary 

Consider the reflection of the wave packet impinging perpendicularly on the surface 
z = 0 of a perfect conductor. The field of this wave packet is given by equations (2.4) 
and (2.6) with a = ) = 0, the field of the reflected wave being -EP( - z ,  t ) .  The force 
density FC acting upon the conductor surface is found immediately by using the stress 
tensor (2.10), the boundary condition E(z = 0) = 0 and the relation H,PH,P* = cE,PE,P* : 

(3.1) 

where gp is the magnitude of the field momentum density (2.16) of the incident wave. 
Thus the impulse (per cm', which will not be repeated below) given to the conductor 
during the entire reflection process is 

c 
F: = - T,,(z + 0 - )  = -(E,PE;*);=O = 20,gP(z = O), 

4x 

+a: 

Pc = 2r, I'_ a: gp(z = 0)dt = 2GP, 

where GP is the electromagnetic field momentum of the whole incident wave packet : 

(3.3) 

Naturally, the problem arises why the mechanical momentum discussed in 9 2 does 
not enter relation (3.2). To answer this question let us determine (from (2.13)) the 
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mechanical momentum density left at a point z by the incident and the reflected wave 
packets : 

E;( z - uy t)E;*( - z - (ig t )  ex p ( 2i zJ -E) + cc] , (3.4) 

where cc stands for complex conjugate. If the wave packet length is I the value of 
pL(z) obviously differs from zero only in the layer ( -  1/2) < z < 0. The whole mechanical 
momentum in this layer is 

0 

PL = pL(z )  dz = 2P, (3.5) 

where 

is the mechanical momentum of the whole incident wave packet (see also Klima and 
PetrBilka 1972). Consequently the momentum conservation law 

P + G P  = P L + P c - P - G p  (3.7) 

is satisfied just due to the presence of the momentum PL- The left side of (3.7) belongs 
to the incident wave and the last two terms of the right-hand side belong to the reflected 
wave. 

To determine the detailed distribution of P L  along the z axis one has to choose 
some explicit expression for the wave packet envelope, eg 

E; = A exp( - r2/2a2), (3.8) 

where A ,  a are constants and ( = z -  u,t. Using (3.4) we have 

The quasi-periodic structure of this expression arises from the fact that, during the 
process of reflection, a quasi-standing wave is formed which acts on plasma by the 
force of the order ( -  V E 2 ) .  

Summarizing the results one can conclude that the momentum 2GP is transferred 
to the conductor immediately during the wave packet reflection. An additional pressure 
arises due to the mechanical momentum density pL of plasma particles. Since the transfer 
of this momentum may be rather slow, relaxation processes should be included in the 
corresponding theoretical description which, however, is not known. 

4. Meshtserski equation for a wave packet 

Let us now consider a quasi-monochromatic wave packet moving along the z axis 
in a slightly inhomogeneous plasma with t = c(z) > 0. The validity of the first WKB 
approximation is assumed so that the field amplitude is proportional to - E - ~ / ~ .  If the 
length I of the wave packet is much less than (d In -E/dz)-', the following energy-mass 
relation holds (Klima and Petsilka 1973~) :  

( M C 2 ) 2  = (P + GP)ZC2 + (M,c2)2, (4.1) 
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where 

‘Ep* dz 
I + €  M = -  

1 6m2c 1, Eo 

in plasmas 

P+GP 
us 

=--- 
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(4.2) 

is the mass of the wave packet and 

is its rest value. We intend to show that the wave packet in question moves as a particle 
with a variable rest mass. 

Equation (4.1) implies that 

dM M dM, 
c2-- = F V , + C ~ > -  

dt M dt ’ (4.3) 

where F = (d/dt)(P+GP). Using (3.3) and (3.6) it is easy to verify that F is the well- 
known force acting on the inhomogeneous plasma (Hora 1969). In other words the 
momentum lost or gained by the wave packet is transferred to or from the plasma 
inhomogeneity, respectively. 

Supposing for a moment that cg << c, one obtains from (4.3) that 

- - (M I d  U ~ ) = L . ~ - - ( M  d c)---, U: dM, 
2 d t  g g  dt ” 2 dt (4.4) 

This is the Meshtserski equation for a particle with a variable mass in the case where the 
mass lost (or gained) by the particle moves (or originally moved) with zero velocity. 

5. ‘Blue-red’ wave packet 

The impulses of radiation coming from pulsars exhibit a characteristic time delay of 
the low-frequency part of their spectrum (eg ter Haar 1972). This delay arises due to 
the frequency dependence of the group velocity. Let us consider the time-averaged 
motion of a particle in such a substantially non-monochromatic wave packet. An 
idealized model of the wave packet is adopted, namely, we suppose that the instantaneous 
frequency i2 varies continuously along the wave packet (figure 2) .  The time-averaged 
velocity of a particle (charge e, mass m) is governed by the following equation (Klima 
1972) : 

where E o  is the local field amplitude and k = (R/c)Jc is the local wavenumber. The 
terms VI/c2 have been omitted in (5.1). In the interstellar space the inequality 1 - ,/c << 1 
is well-satisfied, which simplifies the equation (5.1) considerably. Since, approximately, 

ai2 ak 
at az a Z  at’ 

- _ _  -_ a a  
-+c- = 0, 
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Charged p a r t i c l e  

4- Force +Velocity +Force 
0 Q, 

Figure 2. Electric field E of a wave packet with continuously varying frequency. The force 
on a charged particle IS illustrated. 

we have from (5.1) 

d y  e2 a EoE; 
dt 4m2c3 at k2 
_ -  - 

Neglecting again the terms of higher than second order in E,, we obtain 

d E,E,* 3- e2 
dt 4m2c2(c- V,) dt k 2  ’ 

_- - 

(5.3) 

(5.4) 

where V, is the unperturbed particle velocity along the z axis. Consequently the total 
change of the particle momentum during the interaction with the whole wave packet 
is zero. 

6. Conclusion 

The surface force has been derived which is exerted on an abrupt plasma-vacuum 
boundary by an obliquely impinging electromagnetic wave. This force is perpendicular 
to the boundary and directed from plasma into vacuum. The corresponding stress 
tensor has been expressed in terms of electromagnetic and mechanical momentum 
densities. 

The radiation pressure on a conductor immersed in plasma consists of two parts. 
While the first part is transferred to the conductor immediately during the reflection 
process, the second one is transported by plasma particles. 

The particle-like description of a wave packet (Klima and PetrZilka 1973c) is extended 
by giving the equation of motion of the wave packet. At ug << c this equation is identical 
with the Meshtserski equation for a particle with varying mass. 

The results of 0 5 demonstrate a violation of the (otherwise rather universal) validity 
of the well-known VE2-force. If the terms proportional to ak/at ,  aR/az were omitted 
in the equation of motion (5.1), a continual momentum transfer to particles would 
occur. 

It should be emphasized that, throughout the paper, no assumption has been made 
about the validity of Abraham or Minkowski momentum densities. 
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